Formula $$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta $$

Fractions and Binomials $$ \frac{n!}{k!(n-k)!} = \binom{n}{k} $$

Powers and indices $$k_{n+1} = n^2 + k_n^2 - k_{n-1}$$

$$c = \sqrt{a^2 + b^2}$$
$$k_{n+1} = n^2 + k_n^2 - k_{n-1} $$

In [6]:
from IPython.display import display, Math, Latex
display(Math(r'k_{n+1} = n^2 + k_n^2 - k_{n-1}'))


$$k_{n+1} = n^2 + k_n^2 - k_{n-1}$$

In [9]:
from IPython.display import display, Math, Latex
display(Math(r'\cos (2\theta) = \cos^2 \theta - \sin^2 \theta'))


$$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta$$

In [10]:
from IPython.display import display, Math, Latex
display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx'))


$$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$$